翻訳と辞書
Words near each other
・ Quasioptics
・ Quasipaa
・ Quasipaa boulengeri
・ Quasipaa delacouri
・ Quasipaa exilispinosa
・ Quasipaa fasciculispina
・ Quasipaa jiulongensis
・ Quasipaa shini
・ Quasipaa spinosa
・ Quasipaa verrucospinosa
・ Quasipaa yei
・ Quasiparticle
・ Quasipenetretus
・ Quasiperfect number
・ Quasiperiodic function
Quasiperiodic motion
・ Quasiperiodic tiling
・ Quasiperiodicity
・ Quasipetalichthyidae
・ Quasipetalichthys
・ Quasiprobability distribution
・ Quasiregular
・ Quasiregular element
・ Quasiregular map
・ Quasiregular polyhedron
・ Quasiregular representation
・ Quasireversibility
・ Quasirhabdochaeta
・ Quasisimnia
・ Quasisimnia hirasei


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quasiperiodic motion : ウィキペディア英語版
Quasiperiodic motion

In mathematics and theoretical physics, quasiperiodic motion is in rough terms the type of motion executed by a dynamical system containing a finite number (two or more) of incommensurable frequencies.
That is, if we imagine that the phase space is modelled by a torus ''T'', the trajectory of the system is modelled by a curve on ''T'' that wraps around the torus without ever exactly coming back on itself.
A quasiperiodic function on the real line is the type of function (continuous, say) obtained from a function on ''T'', by means of a curve
:''R'' → ''T''
which is linear (when lifted from ''T'' to its covering Euclidean space), by composition. It is therefore oscillating, with a finite number of underlying frequencies. (NB the sense in which theta functions and the Weierstrass zeta function in complex analysis are said to have quasi-periods with respect to a period lattice is something distinct from this.)
The theory of almost periodic functions is, roughly speaking, for the same situation but allowing ''T'' to be a torus with an infinite number of dimensions.
==See also==

* Quasiperiodicity

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quasiperiodic motion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.